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Abstract

This paper provides a brief overview of some of the requirements,
computational procedures, benefits and applications of the decomposition (i.e.
factorization) of square matrices into the products of several simpler matrices.

Some of the factorizations discussed are LU decomposition, symmetric
eigenvalue decomposition, Jordan decomposition, and the singular value

decomposition. An important takeaway is that these decompositions are related
by their form with progressively demanding requirements and constructions.

”In the language of Computer Science, the expression of [a matrix]
A as a product amounts to a pre-processing of the data in A,
organizing that data into two or more parts whose structures are
more useful in some way, perhaps more accessible for computation.”
- David C. Lay
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CHAPTER 1

Symmetric Eigenvalue
Decomposition (SED)

1.1 Eigenvalues and Eigenvectors

A matrix A can be thought of as a function which takes a vector x⃗ as input,
and outputs a transformed vector Ax⃗.
Eigenvectors are vectors for which Ax⃗ is parallel to x⃗

Ax⃗ = λx⃗

where the factor by which x⃗ is stretched (i.e. the constant λ) is the eigenvalue
corresponding to that particular eigenvector.

Determining Eigenvalues

Eigenvalues of a matrix A can be found by solving for λ in the following
equation:

det(A − λI) = 0

The polynomial this reduces to is referred to as the characteristic polynomial of
A.
If there are any repeated eigenvalues, the numbers of times they repeat are
referred to as their multiplicities.

Determining Eigenvectors

To find an eigenvector e⃗ associated with a particular eigenvalue λ, we must
substitute λ into the equation det(A - λI) = 0 and bring the resulting matrix
to row reduced echelon form, solving for all xn. This will be shown in more
detail in the examples section

1.2 Orthogonal Matrices

Orthogonal matrices consist of orthogonal (i.e. perpendicular) column vectors.
The dot product of two orthogonal vectors is equal to zero.
Conveniently, orthogonal matrices have the property

QT Q = I
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1.3. Symmetric Matrices

When dealing with orthogonal square matrices, they have the additional property

QT = Q−1

1.3 Symmetric Matrices

A symmetric matrix is one for which:

A = AT

If a symmetric matrix has some special properties, its eigenvalues and
eigenvectors likely have special properties as well

• If A consists of real number entries, it’s eigenvalues are real and there
exists a complete set of eigenvectors that are orthogonal and of unit length
(orthonormal).

Spectral
Theorem

Theorem 1.3.1. We can decompose any Hermitian (i.e. real-symmetric) matrix
A with the symmetric eigenvalue decomposition (SED)

A =
n∑

i=1
λipip

T
i = PΛP T = PΛP −1,

Λ = diag(λ1 · · · λn)

P is orthonormal

The following corollaries are used in the examples

1.3.1.1. For any real-symmetric matrix, there are exactly n (not necessarily
distinct) real eigenvalues

1.3.1.2. The associated eigenvectors can be chosen to form an orthonormal
basis

1.3.1.3. A factorization of the form P ΛP T can be crafted given the previous
information

1.4 A Concrete Example

Find the eigenvalues, eigenvectors, and the symmetric eigenvalue decomposition
of the matrix

A =
[
−2 6
6 −2

]

• First, let’s find A’s eigenvalues

det

([
−2 − λ 6

6 −2 − λ

])
= 0
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1.4. A Concrete Example

⇒ λ2 + 4λ − 32 = 0
⇒ (λ + 8)(λ − 4) = 0

λ1 = −8
λ2 = 4

• Next, we’ll substitute our eigenvalues into (A - λ I) to find their associated
eigenvectors

1. λ1 = -8: [
−2 6
6 −2

]
−
[
−8 0
0 −8

]
=
[
6 6
6 6

]
To find the eigenvector e⃗1 corresponding with this eigenvalue, we
must bring this matrix to row reduced echelon form.[

6 6
6 6

]
⇒
[
1 1
0 0

]
{

x1 = −x2

x2 is free
(1.1)

⇒ x⃗ =
[
−x2
x2

]
= x2

[
−1
1

]
e⃗1 =

[
−1
1

]
2. λ2 = 4: [

−2 6
6 −2

]
−
[
4 0
0 4

]
=
[
−6 6
6 −6

]
To find the eigenvector e⃗2 corresponding with λ2, we must bring this
matrix to row reduced echelon form.[

−6 6
6 −6

]
⇒
[
1 −1
0 0

]
{

x1 = x2

x2 is free
(1.2)

⇒ x⃗ =
[
x2
x2

]
= x2

[
1
1

]
e⃗2 =

[
1
1

]
• Therefore the eigenvectors of A are:

e⃗1, e⃗2 =
{[

−1
1

]
,

[
1
1

]}

These vectors are already orthogonal, as e⃗1 · e⃗2 = 0. Let’s normalize them
to form our orthonormal matrix P
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1.4. A Concrete Example

p⃗1 = e⃗1

||e⃗1||
= 1√

2

[
−1
1

]
=
[

−1√
2

1√
2

]

p⃗2 = e⃗2

||e⃗2||
= 1√

2

[
1
1

]
=
[

1√
2

1√
2

]

P =
[

−1√
2

1√
2

1√
2

1√
2

]
• Applying Theorem 1.3.1:

A = PΛP −1

– Because P happens to by symmetric, P = P T

– Also, since P is orthogonal and square, P T = P −1

– Therefore P = P T = P −1[
−2 6
6 −2

]
=
[

−1√
2

1√
2

1√
2

1√
2

] [
−8 0
0 4

] [−1√
2

1√
2

1√
2

1√
2

]
√
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CHAPTER 2

Jordan Decomposition

2.1 Background

Positive Definiteness

A symmetric, square matrix A is positive definite if:

• x⃗ T A x⃗ is positive except when x⃗ = 0⃗.

For a symmetric matrix A;

1. All of A’s eigenvalues are greater than 0,

2. The determinant of A is greater than 0,

3. All pivots of A are greater than 0.

Similarity

Two matrices A and D are similar if

D = P −1AP

for some matrix P. This allows us to group together matrices that perform
similar transformations.

The Factorization

The Jordan Decomposition is the factorization of a square matrix A into the
product of three matrices:

A = PDP −1

where:

1. A and D are similar matrices,

2. D is a diagonal matrix,

3. P −1 is the matrix inverse of P.
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2.2. Powers of a Matrix

2.2 Powers of a Matrix

Let’s say we want to square a matrix A; supposing A has a Jordan decomposition

A = PDP −1

A2 = PDP −1PDP −1

⇒ A2 = PD2P −1

Clearly, this pattern can be extrapolated to higher powers, giving us the
general form:

An = PDnP −1

Since D is diagonal, this works out quite nicely:

⇒ An = P

dn
1 0 0

0 . . . 0
0 0 dn

m

P −1

This makes for a great reduction in complexity. We can avoid n matrix
multiplications, which can be very expensive computations – namely O(m3)
scalar multiplications each, using the classical algorithm. And instead only
perform three matrix multiplications and raise m scalar values to the nth power,
which is relatively trivial.

A Concrete Example

"The heart of mathematics consists of concrete examples and
concrete problems."
- P. R. Halmos

Given the matrices

A =

1 −2 8
0 −1 0
0 0 −1

 ,

P =

1 −4 1
1 0 0
0 1 0

 .

Confirm that P diagonalizes A, then compute A1000

1. First, we have to find P −1:

P −1 =

0 1 0
0 0 1
1 −1 4

 .
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2.3. The Fibonacci Sequence

2. By rearranging the previous equation, the product of P −1AP should give
us a diagonal matrix D

D = P −1AP

D =

0 1 0
0 0 1
1 −1 4

1 −2 8
0 −1 0
0 0 −1

1 −4 1
1 0 0
0 1 0



⇒ D =

−1 0 0
0 −1 0
0 0 1


P diagonalizes A.

√

3. Next we have to solve for A:

A = PDP −1

Since A and D are similar:

An = PDnP −1

Thus
A1000 = PD1000P −1

A1000 = P

−1 0 0
0 −1 0
0 0 1

1000

P −1

⇒ A1000 = P

−11000 0 0
0 −11000 0
0 0 11000

P −1

⇒ A1000 = PI3P −1

⇒ A1000 = PP −1

A1000 = I3

*I3 = 3X3 Identity Matrix*

2.3 The Fibonacci Sequence

The state of a difference equation can be represented by a vector u⃗k where
the second entry is the preceding state, and the first entry is the current state.
Difference equations can be represented by the product of some growth matrix
A and a seed vector u⃗0:

u⃗0 = Aku0 =
n∑

i=1
cnλk

nx⃗n

8



2.3. The Fibonacci Sequence

The Fibonacci Sequence is an example of an additive recurrence with initial
values of 0 and 1. The next digit of the Fibonacci Sequence is the sum of its
two preceding values and can be represented by the form

Fk+2 = Fk+1 + Fk.

Although this is a second order scalar equation, it can be converted to a first
order linear system by letting

u⃗k =
[
Fk+1
Fk

]
1. Fk+2 = Fk+1 + Fk,

2. Fk+1 = F1.

This can be rewritten as the linear system

u⃗k+1 =
[
1 1
1 0

]
u⃗k.

Thus, our transformation matrix

A =
[
1 1
1 0

]
.

Finding a Formula for the kth Fibonacci Number

• First, we must calculate the eigenvalues of A

det

([
1 − λ 1

1 −λ

])
= 0

⇒ λ2 − λ − 1 = 0

λ = 1 ±
√

2
2 .

• Next, let’s find our eigenvectors:

(A − λI)x⃗ =
[
1 − λ 1

1 −λ

]
x⃗ = 0⃗

when:
x⃗ =

[
λ
1

]
⇒ x⃗1 =

[
λ1
1

]
; x⃗2 =

[
λ2
1

]
.

• We can use our initial conditions to solve for our constants:

u⃗0 =
[
F1
F0

]
=
[
1
0

]
= c1x1 + c2x2

⇒ c1 = −c2 = 1√
5

.

9



2.3. The Fibonacci Sequence

• Finally, since
[
Fk1

Fk

]
= c1λ1x1 + c2λ2x2, we can plug in our now-known

quantities to reveal a closed form expression:

Fk = 1√
5

(
1 +

√
5

2

)k

− 1√
5

(
1 −

√
5

2

)k

.

The eigenvalues of a first order system can determine how the system
performs as the inputs increase. Since λ1 = 1+

√
2

2 is the only eigenvalue
with an absolute value greater than 1, the growth of the Fibonacci Sequence
in the limit is determined by λ1, and can thus be approximated by

Fk ≈ 1√
5

(
1+

√
5

2

)k

.
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CHAPTER 3

LU Decomposition

3.1 Background

The LU decomposition of a matrix factorizes a square matrix A into two
triangular matrices L and U:

A = LU

• L is a lower triangular matrix, i.e., all entries above the diagonal are equal
to zero.

• U is an upper triangular matrix, i.e., all entries below the diagonal are
equal to zero.

Finding L and U

1. To compute a LU decomposition, we perform Gaussian elimination on
our original matrix A, until it is of upper triangular form (not necessarily
reduced echelon form). This newfound upper triangular matrix will serve
as U.

2. Along the way, we must keep track of which row operations we have used,
as well as the order in which they were applied. The elementary matrices
which represent the row operations will be multiplied successively on the
left of A.

3. Lastly, we have to isolate A. To do so, we must multiply on the left of
both sides by the inverse product of our elementary matrices to reveal
our lower triangular matrix L.

3.2 A Concrete 2X2 Example

"Practice yourself, for heavens sake, in little things; and thence
proceed to greater"
- Epictetus

Find an LU Decomposition of the previously established Fibonacci matrix:

A =
[
1 1
1 0

]
.
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3.3. A 3X3 Example with Variables

• To turn A into an upper triangular matrix, we must subtract Row 1 from
Row 2:

– Representing this row operation as an elementary matrix, gives us

E1 =
[

1 0
−1 1

]
.

• Multiplying our original matrix A on the left by this elementary matrix is
equivalent to performing the row operation, which gives us the equation

E1A = U[
1 0

−1 1

] [
1 1
1 0

]
=
[
1 1
0 −1

]
.

• All that’s left is to Multiply on the left of both sides by E−1
1

E−1
1 E1A = E−1

1 U[
1 0
1 1

] [
1 0

−1 1

] [
1 1
1 0

]
=
[
1 0
1 1

] [
1 1
0 −1

]
.

• This simplifies down to
I2A = E−1U

Since E−1 is of lower triangular form,

I2A = LU

⇒ A = LU

⇒
[
1 1
1 0

]
=
[
1 0
1 1

] [
1 1
0 −1

]
.

√

3.3 A 3X3 Example with Variables

Find an LU Decomposition of the matrix A

A =

1 0 1
a a a
b b a

 ,

for which real numbers a and b does it exist?

1. Our primary objective is to bring A to an upper triangular matrix by way
of Gaussian elimination.

12



3.3. A 3X3 Example with Variables

a) First we’d like to clear the row 2, column 1 entry.

To do so, we will subtract a times row 1 from row 2, which is
equivalent to multiplying A on the left by the matrix E1

E1 =

 1 0 0
−a 1 0
0 0 1


E1A = U∗ 1 0 0

−a 1 0
0 0 1

1 0 1
a a a
b b a

 =

1 0 1
0 a 0
b b a

 .

b) Next, we want to eliminate the U∗
3,1 entry.

To complete this, we will subtract b times row 1 from row 3,
or effectively multiply E1A on the left by E2

E2 =

 1 0 0
0 1 0

−b 0 1


E2E1A = U∗ 1 0 0

0 1 0
−b 0 1

 1 0 0
−a 1 0
0 0 1

1 0 1
a a a
b b a

 =

1 0 1
0 a 0
0 b a − b

 .

c) Our last objective is to clear the U∗
3,2 entry.

We will multiply on the left by the matrix E3 which corresponds to
a subtraction of b/a times row 2 from row 3;

E3 =

1 0 0
0 1 0
0 −b/a 1


E3E2E1A = U1 0 0

0 1 0
0 −b/a 1

 1 0 0
0 1 0

−b 0 1

 1 0 0
−a 1 0
0 0 1

1 0 1
a a a
b b a

 =

1 0 1
0 a 0
0 0 a − b

 .

2. Subsequently, we have to isolate A by multiplying both sides of the
equation on the left by the inverse product of our elimination matrices:

(E3E2E1)−1(E3E2E1)A = (E3E2E1)−1
U

⇒ I3A = E−1
1 E−1

2 E−1
3 U .

13



3.3. A 3X3 Example with Variables

The product of inverse elimination matrices will give us our lower triangular
matrix L:

L = E−1
1 E−1

2 E−1
3

⇒ L =

1 0 0
a 1 0
0 0 1

1 0 0
0 1 0
b 0 1

1 0 0
0 1 0
0 b/a 1


⇒ L =

1 0 0
a 1 0
b b/a 1

 .

Therefore we have that A = LU , where

⇒

1 0 1
a a a
b b a

 =

1 0 0
a 1 0
b b/a 1

1 0 1
0 a 0
0 0 a − b

 .

√

Conclusion: The matrix A has an LU Decomposition for all real values of
a and b; given a ̸= 0.

14



CHAPTER 4

The Singular Value Decomposition
(SVD)

4.1 Background

The singular value decomposition is widely regarded as the one of the most
valuable matrix factorizations. SVD is efficiently computed for large matrices,
and can be used to approximate a matrix to arbitrary precision using the
Eckart-Young Low Rank Approximation Theorem which will be discussed
briefly in the applications section.

The singular value decomposition takes the form

A = UΣV T

where

• U is an orthogonal matrix,

• Σ is a diagonal matrix and consists of singular values, i.e. σn (square
roots of the eigenvalues of A), and

• V is an orthogonal matrix.

A singular value decomposition exists for any matrix, square or not.

If a matrix A is symmetric positive definite – A = AT , its eigenvectors
are orthogonal and consist of positive, real values – we are allowed to use a
special case of the SVD where U = V = P, allowing for the familiar form

A = PΛP T

In section 1.3, we established that, given a symmetric nxn matrix, we can
form a set of n eigenvectors.
It is known that the matrix AT A is symmetric for a square matrix A and shares
many important properties with A. These properties allow an SVD of A to be
performed on the symmetric matrix AT A, even if our original matrix A is not
symmetric.
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4.2. A Concrete 2X2 Example

Calculation

The key part of finding the singular value decomposition is finding an
orthonormal basis v⃗ for the row space of A where

A
[
v1 v2 . . . vn

]
=
[
σ1u1 σ2u2 . . . σnun

]
where u⃗ is an orthonormal basis for the column space of A, and σn are termed
singular values.
After incorporating the nullspaces, and making v⃗ and u⃗ to be orthonormal bases
for the entire space Rn the equation becomes

AV = UΣ

Because V is orthogonal, we can multiply both sides on the right by
V −1 = V T to isolate A:

A = UΣV T

It wouldn’t be wise to attempt to solve for U, V, and Σ simultaneously, so
instead we will multiply both sides on the left by their transpose AT = V ΣT UT

where Σ can be substituted for ΣT since Σ is diagonal and U−1 can be substituted
for UT since U is orthogonal, to get the result

AT A = V ΣU−1UΣV T

⇒ AT A = V Σ2V T

AT A = V


σ2

1 0 0 0
0 σ2

2 0 0

0 0 . . . 0
0 0 0 σ2

n

V T

We can find V by diagonalizing the symmetric positive definite matrix AT A.
The eigenvectors of AT A form the columns of V. Similarly, the eigenvalues of
AT A form the diagonal elements of Σ2 ( σ2

i ), where σi are the corresponding
positive square roots of λi.

To find U, we can either repeat this process with AAT , or use the now
known matrices A, V, and Σ to solve for U

AV = UΣ

⇒ AV Σ−1 = UΣΣ−1

⇒ AV Σ−1 = U.

4.2 A Concrete 2X2 Example

" . . . a concrete life preserver thrown to students sinking in a sea of
abstraction"
- W. Gottschalk
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4.2. A Concrete 2X2 Example

Determine the singular value decomposition of the matrix

A =
[

5 5
−1 7

]
.

• First, we must find AT A:

AT A =
[
5 −1
5 7

] [
5 5

−1 7

]

⇒ AT A =
[
26 18
18 74

]
.

• Next, let’s find the eigenvalues of AT A:

det
(
AT A − λI

)
= 0

det

([
26 − λ 18

18 74 − λ

])
= 0

⇒ (26 − λ)(74 − λ) − 182 = 0
⇒ λ2 − 100λ + 1600 = 0
⇒ (λ − 20)(λ − 80) = 0

λ1 = 20,

λ2 = 80.

• After finding our eigenvalues of AT A, we must find their associated
eigenvectors to form V

1. λ1 = 20
AT A − 20I =

[
6 18
18 54

]
v1 =

[
−3
1

]
.

Time to normalize v1

v1 =
[

−3√
10
1√
10

]
.

2. λ2 = 80
AT A − 80I =

[
−54 18
18 −6

]
v2 =

[
1
3

]
.

Time to normalize v2

v2 =
[

1√
10
3√
10

]
.
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4.3. Applications

3. Thus,

V =
[

−3√
10

1√
10

1√
10

3√
10

]
.

4. We’ll need V T later, so let’s go ahead and find it:

Since V is symmetric,
V T = V

V T =
[

−3√
10

1√
10

1√
10

3√
10

]
.

• Now let’s use the eigenvalues of AT A to form Σ

Σ2 =
[
σ2

1 0
0 σ2

2

]
=
[
λ1 0
0 λ2

]
=
[
20 0
0 80

]

⇒ Σ =
[√

20 0
0

√
80

]
Σ =

[
2
√

5 0
0 4

√
5

]
.

• Next we find U:
U = AV Σ−1

U =
[

5 5
−1 7

] [ −3√
10

1√
10

1√
10

3√
10

][
1

2
√

5 0
0 1

4
√

5

]

U =
[

1√
2

1√
2

−1√
2

1√
2

]
.

• Finally, we can conclude our factorization of A:

A = UΣV T

A =
[

5 5
−1 7

]
=
[

1√
2

1√
2

−1√
2

1√
2

] [
2
√

5 0
0 4

√
5

][ −3√
10

1√
10

1√
10

3√
10

]
.

√

4.3 Applications

’The signal is the truth. The noise is what distracts us from the
truth.’
- Nate Silver

Eckart-
Young
Theorem

Theorem 4.3.1. If a matrix B has rank k then

||A − Ak|| ≤ ||A − B||.

This can be interpreted as saying that truncating A to rank k gives a better
approximation to A than any other matrix B, given B is rank k or lower.
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4.3. Applications

Consequences of the Eckart-Young Theorem

The Eckart-Young theorem is an important extension of the singular value
decomposition in which a matrix may be approximated to arbitrary precision
by truncating our matrices U , Σ, and V T to a common rank r, of our choice.
The truncated matrix A is not only a good approximation, it is the best rank r
approximation to A possible.

In order to accurately approximate our original matrix A, our matrices must
be arranged in a particular fashion. The diagonal entries of Σ, σi correspond to
the column vectors u⃗i, and the row vectors v⃗i

T . The values of σi indicate the
relative importance of their corresponding u⃗i and v⃗i

T in communicating the
signal of A. Therefore, the more important a set of column vectors and row
vectors are, the greater their analogous σi value will be. Once our matrices are
in order, we can begin extracting signal from our original matrix.

1. U will be truncated to only include its first r columns,

2. Σ will be truncated to include its first r columns and r rows, becoming an
rxr matrix,

3. V T will be truncated to include its first r rows;

A ≈


∣∣ ∣∣∣∣ ∣∣

u⃗1 . . . u⃗r∣∣ ∣∣∣∣ ∣∣


σ1 0 0

0 . . . 0
0 0 σr



∣∣ ∣∣∣∣ ∣∣

v⃗1 . . . v⃗r∣∣ ∣∣∣∣ ∣∣


T

.

Image Compression

Every screen we see is composed of a grid of discrete components called pixels.
Nearly every color we see on said screen is not the true color we believe it to
be, but rather an approximate assemblage of the primary colors red, green,
and blue. Each primary color in each pixel is given a saturation value typically
ranging from 0 to 255 to determine its intensity. These combinations can be
represented in hexadecimal by a six-digit hex color code.

A matrix can be thought of as a structure to organize and store numerical
data. Because screens typically form a rectangular pattern of discrete values,
matrices are a trivial abstraction for representing them. To simplify our picture
model, let’s take a greyscale image. The shades of grey are represented by
the set of hex color codes in which the red, green, and blue values are all
equal to one another. Thus, to represent a greyscale image, we can easily
return to the comfortable world of integers by storing only the greyscale intensity.

The average desktop monitor resolution is 1980 pixels wide by 1080 pixels
high. To represent a greyscale image of this value, we would need a matrix
with 2,138,400 entries (note – if we wanted to represent a colored image, we
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would need three matrices of this size).

With the rise of social media sites such as Instagram, Facebook, and Tumblr,
the number of images transmitted on a daily basis has skyrocketed. The amount
of images on the internet as a whole is well into the hundreds of billions, if not
trillions by now. By compressing the largest of these images to a standardized
size, not only do these sites become easier to manage, but there are sizeable
reductions in server loads, and hence carbon emissions.

Image Compression Example

Georgia Highlands Cartersville Campus Entrance

Collaborative Filtering

Collaborative filtering is a technique most commonly used by recommender
systems to extract patterns and make predictions from the inputs of multiple
agents. In companies such as Netflix or Amazon, collaborative filtering is used
to try and determine which shows/products one user may like to view/purchase
next based on their past preferences as well as the preferences of other users with
similar taste. While this is not accomplished solely using SVD, the factorization
seems to be a common denominator among many approaches to the problem.
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Latent Semantic Indexing

Another technology with its roots in the singular value decomposition is Latent
Semantic Indexing (LSI). LSI is a way for computers to process natural language
and better understand the meaning behind the text it reads, rather than only
the literal lexical arrangements. Latent Semantic Indexing uses the truncated
singular value decomposition in addition to a few other methods to attempt to
determine the word usage structure across documents despite variability in word
choice. Because of this, LSI is able to see past synonymy (i.e. different words
with the same meaning) and polysemy (i.e. one word with multiple meanings).
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